- konvexe Menge
-
konvẹxe Menge,Mathematik: nichtleere Menge, die mit zwei Punkten stets auch deren Verbindungsstrecke enthält.
Universal-Lexikon. 2012.
Universal-Lexikon. 2012.
Konvexe Menge — eine konvexe Menge eine nichtkonvexe Menge In der … Deutsch Wikipedia
Konvexe Funktion — In der Analysis heißt eine Funktion f von einem Intervall I (oder allgemeiner einer konvexen Teilmenge C eines reellen Vektorraums) nach … Deutsch Wikipedia
Konvexe und konkave Funktionen — Konvexe Funktion In der Analysis heißt eine Funktion f von einem Intervall I (oder allgemeiner einer konvexen Teilmenge C eines reellen Vektorraums) nach … Deutsch Wikipedia
Konvexe Teilmenge — eine konvexe Menge eine nichtkonvexe Menge In der Mathematik heißt eine geometrische Figur oder allgemeiner eine Teilmenge eines … Deutsch Wikipedia
Konvexe Hülle — Die blaue Menge ist die konvexe Hülle der roten Menge. Die konvexe Hülle einer Teilmenge ist die kleinste konvexe Menge, die die Ausgangsmenge enthält. Betrachtet wird dieses Objekt in unterschiedlichen mathematischen Disziplinen wie zum Beispiel … Deutsch Wikipedia
Konvexe Optimierung — Die Konvexe Optimierung ist ein Teilgebiet der mathematischen Optimierung. Es ist eine bestimmte Größe zu minimieren, die sogenannte Zielfunktion, welche von einem Parameter, welcher mit x bezeichnet wird, abhängt. Außerdem sind bestimmte… … Deutsch Wikipedia
Konkave Menge — eine konvexe Menge eine nichtkonvexe Menge In der Mathematik heißt eine geometrische Figur oder allgemeiner eine Teilmenge eines … Deutsch Wikipedia
Nichtkonvexe Menge — eine konvexe Menge eine nichtkonvexe Menge In der Mathematik heißt eine geometrische Figur oder allgemeiner eine Teilmenge eines … Deutsch Wikipedia
Beschränkte Menge — Die Eigenschaft der Beschränktheit wird in verschiedenen Bereichen der Mathematik einer Menge zugeordnet. Die Menge wird dann als (nach unten oder oben) beschränkte Menge bezeichnet. Damit ist zunächst gemeint, dass alle Elemente der Menge… … Deutsch Wikipedia
Ausgewogene Menge — Als ausgewogene Menge wird in der Funktionalanalysis eine Teilmenge T eines reellen oder komplexen Vektorraumes bezeichnet, wenn zu jedem Vektor x in T und jeder Zahl r mit | r | < 1 der Vektor rx ebenfalls in T liegt. Die Strecke von x nach x … Deutsch Wikipedia